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Abstract 

Interpreting Granger causality as economic causality implies that the underlying VAR model 

is a structural economic model. However, this is wrong if simultaneity occurs. Magnitude and 

stability of possible errors are analysed in a simulation study. It is shown that economic 

misinterpretations of tests of Granger causality can occur with probability one for realistic 

parameter values. Furthermore, the power of the test can be rather low even with a sample size 

of T=50. 
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1. Introduction 

After the seminal paper of Granger (1969) testing Granger causality has become a workhorse 

in applied econometrics. By using a two-dimensional VAR model it is tested whether lagged 

values of y2 improve the forecast of y1. Although it is well known that a VAR model is only a 

reduced form if instantaneous causality exists, its parameters are sometimes interpreted as 

structural economic coefficients. Consider e.g. Hartwig (2010). He analysed whether health 

stimulates economic growth based on five year averages of annual data. Depending on the 

estimation method he found either none or a negative effect of lagged health on economic 

growth and interpreted this structurally. However, economic growth might be a function of 

health in the same five year period. Thus, a simultaneous equation model with instantaneous 

causality might be the correct specification, and the results for the lagged coefficients might be 

misleading. Further examples in the recent literature are amongst others Braunerhjelm et.al. 

(2010, economic growth and entrepreneurship, annual data), Casu and Girardone (2009, 

competition and efficiency in banking sectors, annual data), Fiordelisi et.al. (2011, capital ratio, 

risk and cost efficiency of banks, annual data), Handa and Khan (2008, financial development 

and economic growth, annual data) and Mah (2010, foreign direct investment and economic 

growth, annual data). 

Interpreting VAR coefficients structurally in the presence of instantaneous causality clearly 

contradicts even to the seminal paper of Granger. He named a VAR-model as (simple) causal 

model only if instantaneous causality can be excluded theoretically (p. 427). However, if 

instantaneous causality occurs, tests of Granger causality may run into a dilemma. On the one 

hand, the tests may decide statistically correct about significance and sign of lagged values in 

the reduced form. On the other hand, a conclusion on economic causality might be misleading 

because instantaneous causality might change the results or might be not detected. 

Nevertheless, it is not obvious, whether this matters in empirical practice. Therefore, this 

paper presents a simulation study that analyses the magnitude and the stability of possible 

errors. It distinguishes between statistical problems (like size distortions or a low power) and 

errors in the economic interpretation of Granger causality tests (e.g. a wrong conclusion of no 

causality). It can be seen that – given the usual stochastic assumptions – most problems are such 

of an economic misinterpretation.  

Section 2 describes simulation design and results for a static simultaneous model, whereas in 

section 3 a dynamic model is considered. Section 4 concludes.  
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2. A static simultaneous equation model 

The first part of the simulation is a static simultaneous equation model (model A):  
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 iid N(0,). (1) 

It is well known that the system (1) is not identified (cf. e.g. Greene 2008, ch. 13.3, for a 

detailed depiction of identification issues). Either 1 and 2 or  have to be restricted to ensure 

identification. Since the gammas are the parameters of interest,  is restricted to a diagonal 

matrix, i.e. the correlation between u1t and u2t is restricted to zero. 

The reduced form of (1) is 
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 iid N(0,v). (2) 

Although  is restricted to a diagonal matrix, v is not, i.e. v1t and v2t are usually correlated. (2) 

is the data generating process that is used to simulate the data. The sample size is chosen as 

T=50 (small sample) and T=500 (large sample). Thus, it can be seen whether asymptotic 

characteristics help to reduce the problems. 

For the purpose of simplicity, Granger causality of y2 for y1 is tested by using an AR(1) 

structure: 

 
1t 11 1,t 1 12 2,t 1 1t

2t 21 1,t 1 22 2,t 1 2t

y y y

y y y

 

 

     

     
 (3) 

Thus, the usual F-test reduces to a t-test of  

 H0: 12 = 0   vs.   H1: 12  0. (4) 

Comparing (2) and (3) points out the dilemma. The parameter 12 is equal to zero in the data 

generating process. Thus, in a statistical sense the hypothesis (4) should not be rejected. Wrong 

rejections should only occur at the given level of significance. If H0 is rejected too often, size 

distortion occurs. If it is rejected too scarcely, the power of the test might be rather low. 

However, in an economic sense, acceptance of H0 is "bad" because the causality of y2 for y1 is 

not detected. 

The unknown parameters of the data generating process (2) are 1, 2,  2

u1 1tVar u  , and 

 2

u2 2tVar u  . A broad range of these parameters and the usual levels of significance (1, 5, 

10%) were taken into account.
2
 However, the results were always similar.

 
Figure 1 pictures the 

                                                      
2
 All simulations were done with R. The R codes of both models are attached in Appendix 1. The codes 

involve random number generation of ut, transformation of ut into vt, calculation of y1t and y2t according 

to (2) (model A) or (6) (model B), OLS estimation of the first equation of (3) or (6), and calculation of the 

t-statistic and its p-values of 12 or 12. For both models 10000 replications were done, and the shares of 

rejections were calculated. 
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results at the 5% level according to a broad variation of the correlation between y1,t-1 and y2,t-1 

(rho):
3
 

 

Figure 1: Share of rejections of H0 (5% level) 

  

Model A with 1 = 0.5, 2 = 0.5, u1  [0.01, 4], u2  [0.01, 4], 10000 replications 

 

If the sample size is large, no size distortions are observed. And even if the sample size is 

low, only small size distortions occur.
4
 Thus, in a statistical sense, the test of Granger causality 

behaves well. However, in an economic sense, the decision would be wrong. It would be 

decided that there is no causality although a relevant instantaneous causality exists.  

 

3. A dynamic simultaneous equations model 

The simulation design of the second part is dynamic (model B): 
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. (5) 

In (5) no identification problem occurs because any linear combination of the two equations 

differs from the original equations. Nevertheless,  is again chosen as diagonal matrix to keep it 

as simple as possible.  

  

                                                      
3
 This correlation can influence the estimation results in (3). Because of (2) and correlation stationarity 

the correlation between y1,t-1 and y2,t-1 is equal to the correlation between v1t and v2t. This correlation can 

be varied either by variation of 1 and 2 or by variation of u1 andu2. The data of figure 1 were 

calculated with the latter variation. 
4
 A detailed table of the results can be found in Appendix 2a). Only for the 1% level, also in large samples 

the share of rejections is occasionally larger than the nominal size. 
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The reduced form of (5) is: 
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where definitions and stochastic assumptions of v1t and v2t are the same as in (2). The initial 

values are chosen as y11 = y21 = 0. 

Since (6) is a dynamic system, the time series y1t and y2t can be non-stationary. Therefore, 

the eigenvalues of 
11 12

21 22

  
   

  
 are checked. The parameters in (5) are chosen such that all 

eigenvalues of  are absolutely smaller than 0.9. Thus, non-stationarity and "near" non-

stationarity are avoided.  

 

a) Wrong sign 

In (6) 12 is always unequal to zero if the system is simultaneous (i.e. 1  0) and dynamic 

(i.e. 2  0). Thus, rejecting H0: 12 = 0 is statistically correct and leads to the "correct" 

economic decision that y2 is causal for y1 (only the lag is still wrong because y2 is instantaneous 

causal). However, the sign of 12 might be different from that of 1. Let all parameters of (5) be 

positive. Furthermore, choose 12 > 1. This implies a negative value of 12 although the 

structural effect of y2 on y1 is positive. Therefore, rejecting H0 and concluding a significant 

negative value of 12 is statistically correct. However, the conclusion of a negative causal effect 

of y2 on y1 would be wrong. That could explain for instance the counterintuitive result of 

Hartwig (2010).
5
 

The magnitude of this problem may depend on the value of 2. The higher 2 is the larger the 

problem might be because the test becomes more powerful. H0 is rejected with a higher 

probability. Therefore, it may also be concluded more often that increasing y2 reduces y1 

although the opposite is true. Figure 2 pictures a result at the 5% level given fixed values of all 

other parameters. 

                                                      
5
 Another explanation could be the measurement of health. This is for instance done by expenditures for 

health. If the health system is inefficient, higher expenditures for health may reduce economic growth. 
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Figure 2: Share of rejections of H0 concluding a negative effect of y2 on y1 (5% level) 

 

Model B with 1 = 2, 2 = 1, 1 = 0.2, u1 = 2, u2 = 1, T=500, 10000 replications 

 

The probability of a wrong decision converges to one. Thus, a negative effect of y2 on y1 is 

concluded with probability one although in the true model (5) y2,t-1 itself does not influence y1t 

structurally and the instantaneous effect of y2 on y1 is positive. Therefore, all policy conclusions 

based on the Granger causality test would be completely wrong with probability one – given 

that ß2 is enough different from zero. Changing the simulation design sometimes led to less 

extreme results. However, the tendency was always the same. 

 

b) Low power in small samples 

So far no statistical problems have been reported. However, kinds of byproducts of the 

simulation study have been power comparisons between small and large samples. An example is 

presented in figure 3. In contrast to the analysis above, the gamma parameters are chosen such 

that the sign of 12 is equal to the sign of 1 for any positive 2. Therefore, concluding a positive 

or negative structural effect of y2 on y1 is right if the sign of 
12̂  is equal to the sign of 12. Only 

the time is still wrong because lagged instead of instantaneous causality is concluded. The right 

branch of figure 3 pictures the rejections with correct sign.
6
 The left branch is just for the 

purpose of comparison. Here, the sign of 12 differs from the sign of 1 so that the economic 

conclusion would be wrong again.  

Thus, the power of the test is rather low for T=50, i.e. for a sample size that is large for 

annual data and might be large even for quarterly data. Much more distance from zero is needed 

to get a high probability of rejection. Although the power still rises with 2, it remains 

considerably below one for those values of 2 that guarantee stationarity. In contrast to this the 

power for T=500 converges rapidly to one.  

                                                      
6
 The whole results can be found in Appendix 2b).  
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Figure 3: Share of rejections where the sign of 12̂  is equal to the sign of 12 (5% level) 

   

Model B with 1 = 0.6, 2 = 0.4, 1 = 0.1, u1 = 2, u2 = 1, 10000 replications 

 

4. Conclusion 

Using tests of Granger causality in case of simultaneity is not only problematic in an ivory 

tower. It is also empirically relevant. In a static simultaneous model without lagged dependent 

variables, the Granger test detects causality of y2 for y1 only with probability alpha, i.e. the level 

of significance, for a broad range of parameters. In a dynamic simultaneous model with an 

AR(1) structure, the detected sign of causality can be wrong with probability one. Thus, the 

issue of simultaneity should be treated more carefully in applied econometrics. If simultaneity 

cannot be excluded theoretically testing the correlation of the error terms of the test equations 

might be useful (cf. Lütkepohl 2005, p. 47). 
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Appendix 1: R codes for the simulation 

 

a) R code for model A 

# Load MASS (write.matrix requires MASS) 

grkau<-function(replikat,gamma2){ 

n=50 

n10=10*n 

gamma1=-0.5 

k=1 # k = order of AR process 

i=1 # i = replicationindex 

kq_erg=matrix(nrow=replikat,ncol=8) 

 

set.seed(310465) 

repeat{ 

 u1=rnorm(n10,mean=0,sd=4) # 4 is an example 

 u2=rnorm(n10,mean=0,sd=0.01) # 0.01 is an example 

 v1=(u1+gamma1*u2)/(1-gamma1*gamma2) 

 v2=(gamma2*u1+u2)/(1-gamma1*gamma2) 

 y1=v1 

 y2=v2 

 

reg=lm(y1[(k+1):n10]~y1[k:(n10-1)] + y2[k:(n10-1)] -1)  

 ergebnis=summary(reg) 

 kq_erg[i,1]=ergebnis$coefficients[1,1] # estimate of phi11 

 kq_erg[i,3]=ergebnis$coefficients[2,1] # estimate of phi12 

 kq_erg[i,5]=ergebnis$coefficients[1,4] # p-value of t-test phi11

  

 kq_erg[i,7]=ergebnis$coefficients[2,4] # p-value of t-test phi12 

 

reg=lm(y1[(k+1):n]~y1[k:(n-1)] + y2[k:(n-1)]-1)  

 ergebnis_n=summary(reg)  

 kq_erg[i,2]=ergebnis_n$coefficients[1,1]  

 kq_erg[i,4]=ergebnis_n$coefficients[2,1]  

 kq_erg[i,6]=ergebnis_n$coefficients[1,4]  

 kq_erg[i,8]=ergebnis_n$coefficients[2,4]  

 

i=i+1 

if(i==replikat+1){break}} 

 

granger_out=matrix(nrow=replikat+1,ncol=8) 

granger_out[1,]=c("phi11","phi11_n","phi12","phi12_n","pvalue_phi11","

pvalue_phi11_n","pvalue_phi12","pvalue_phi12_n") 

granger_out[2:(replikat+1),]=kq_erg 

write.matrix(granger_out,sep="\t",file="C:\\name.r") 

} 

#____________________________________________ 

grkau(10000,0.5) 
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b) R code for model B 

# Load MASS 

grkau<-function(replikat,gamma2){ 

n=50 

n10=10*n 

gamma1=0.6 

beta1=0.1 

beta2=-0.5 # -0.5 is an example 

k=1 

i=1 

kq_erg=matrix(nrow=replikat,ncol=8) 

y1=vector(mode="numeric",length=n10)  

 y1[1]=0 

y2=vector(mode="numeric",length=n10)  

 y2[1]=0 

 

set.seed(310465) 

repeat{ 

 u1=rnorm(n10,mean=0,sd=2) 

 u2=rnorm(n10,mean=0,sd=1) 

 v1=(u1+gamma1*u2)/(1-gamma1*gamma2) 

 v2=(gamma2*u1+u2)/(1-gamma1*gamma2) 

for(j in 2:n10) { 

 y1[j]=(beta1/(1-gamma1*gamma2))*y1[j-1]+(gamma1*beta2/(1-

 gamma1*gamma2))*y2[j-1]+v1[j] 

 y2[j]=(gamma2*beta1/(1-gamma1*gamma2))*y1[j-1]+(beta2/(1-

 gamma1*gamma2))*y2[j-1]+v2[j] 

 }  

 

reg=lm(y1[(k+1):n10]~y1[k:(n10-1)] + y2[k:(n10-1)] -1)  

 ergebnis=summary(reg) 

 kq_erg[i,1]=ergebnis$coefficients[1,1]  

 kq_erg[i,3]=ergebnis$coefficients[2,1]  

 kq_erg[i,5]=ergebnis$coefficients[1,4]  

 kq_erg[i,7]=ergebnis$coefficients[2,4]  

 

reg=lm(y1[(k+1):n]~y1[k:(n-1)] + y2[k:(n-1)]-1)  

 ergebnis_n=summary(reg)  

 kq_erg[i,2]=ergebnis_n$coefficients[1,1]  

 kq_erg[i,4]=ergebnis_n$coefficients[2,1]  

 kq_erg[i,6]=ergebnis_n$coefficients[1,4]  

 kq_erg[i,8]=ergebnis_n$coefficients[2,4]  

 

i=i+1 

if(i==replikat+1){break}} 

 

granger_out=matrix(nrow=replikat+1,ncol=8) 

granger_out[1,]=c("phi11","phi11_n","phi12","phi12_n","pvalue_phi11","

pvalue_phi11_n","pvalue_phi12","pvalue_phi12_n") 

granger_out[2:(replikat+1),]=kq_erg 

write.matrix(granger_out,sep="\t",file="C:\\name.r") 

} 

#____________________________________________ 

grkau(10000,0.4) 

 



 

 

- 10 - 

Appendix 2: Simulation results 

a) Share of rejections for model A (1 = -0.5, 2 = 0.5) 

sigma u1/ 

sigma u2 

rho T=500, 

10% level 

T=500, 

5% level 

T=500, 

1% level 

T=50, 

10% level 

T=50, 

5% level 

T=50, 

1% level 

3.75/ 4 -0.0516 0.098 0.0454 0.0084 0.1017 0.0514 0.0095 

3.525/ 4 -0.1009 0.0985 0.0453 0.0082 0.102 0.0518 0.0097 

3.3/ 4 -0.1530 0.1004 0.045 0.0082 0.1019 0.0522 0.0095 

3.1/ 4 -0.2019 0.0994 0.0445 0.0086 0.1021 0.052 0.0089 

2.9/ 4 -0.2532 0.0988 0.0444 0.0084 0.1012 0.0527 0.0091 

2.725/ 4 -0.3001 0.098 0.0452 0.0086 0.1001 0.053 0.0087 

2.55/ 4 -0.3490 0.098 0.0443 0.0084 0.1005 0.0531 0.0088 

2.375/ 4 -0.3998 0.0977 0.0441 0.0078 0.1012 0.0518 0.0088 

2.2/ 4 -0.4524 0.0971 0.0447 0.0075 0.1017 0.051 0.0081 

2.05/ 4 -0.4988 0.0961 0.0443 0.0074 0.1005 0.0513 0.008 

1.9/ 4 -0.5462 0.0963 0.0454 0.0072 0.0998 0.0499 0.0087 

1.725/ 4 -0.6026 0.0954 0.0462 0.0071 0.0968 0.0498 0.009 

1.58/ 4 -0.6497 0.0949 0.0465 0.0067 0.0973 0.0487 0.0088 

1.44/ 4 -0.6952 0.0924 0.0459 0.007 0.0974 0.0477 0.009 

1.27/ 4 -0.7497 0.0948 0.0458 0.0072 0.097 0.0467 0.0092 

1.1/ 4 -0.8024 0.0926 0.0448 0.0075 0.0967 0.0464 0.009 

0.94/ 4 -0.8492 0.0942 0.0442 0.0082 0.0957 0.0467 0.0088 

0.75/ 4 -0.8995 0.0959 0.0449 0.0075 0.0963 0.0475 0.0081 

0.64/ 4 -0.9251 0.0947 0.0444 0.0073 0.0962 0.0469 0.008 

0.52/ 4 -0.9495 0.0952 0.0455 0.008 0.0959 0.0476 0.0079 

0.36/ 4 -0.9752 0.0944 0.0464 0.0079 0.0944 0.0468 0.0072 

0.05/ 4 -0.9995 0.096 0.0453 0.0076 0.0943 0.0465 0.008 

0.01/ 4 -0.99998 0.0971 0.0451 0.0084 0.0941 0.0462 0.0083 

4/ 3.75 0.0516 0.098 0.046 0.0091 0.1012 0.0512 0.0088 

4/ 3.525 0.1009 0.0972 0.0471 0.0092 0.1015 0.052 0.0091 

4/ 3.3 0.1530 0.097 0.0474 0.0092 0.1021 0.0512 0.0093 

4/ 3.1 0.2019 0.0976 0.0469 0.0094 0.1026 0.0503 0.0098 

4/ 2.9 0.2532 0.0951 0.047 0.0093 0.1022 0.0503 0.0099 

4/ 2.725 0.3001 0.0952 0.0464 0.0095 0.1027 0.0498 0.0099 

4/ 2.55 0.3490 0.0953 0.0455 0.0095 0.1033 0.0493 0.0103 

4/ 2.375 0.3998 0.0949 0.0456 0.0092 0.1027 0.0488 0.0107 

4/ 2.2 0.4524 0.0952 0.0466 0.0091 0.1029 0.048 0.0106 

4/ 2.05 0.4988 0.0953 0.0466 0.0093 0.1014 0.0479 0.0106 

4/ 1.9 0.5462 0.0953 0.0459 0.0095 0.1012 0.0494 0.0105 

4/ 1.725 0.6026 0.0954 0.0463 0.0101 0.1013 0.0496 0.0104 

4/ 1.58 0.6497 0.0947 0.0465 0.0103 0.1004 0.0492 0.0104 

4/ 1.44 0.6952 0.0943 0.0463 0.0106 0.0996 0.049 0.0105 

4/ 1.27 0.7497 0.0928 0.0463 0.0106 0.0994 0.049 0.0105 

4/ 1.1 0.8024 0.0929 0.0463 0.0107 0.0993 0.0494 0.0108 

4/ 0.94 0.8492 0.0926 0.0466 0.0107 0.0992 0.0493 0.0107 

4/ 0.75 0.8995 0.0927 0.0456 0.0111 0.0978 0.0492 0.0106 

4/ 0.64 0.9251 0.0931 0.0453 0.0109 0.0978 0.0494 0.0103 

4/ 0.52 0.9495 0.094 0.0461 0.0112 0.0973 0.0496 0.0101 

4/ 0.36 0.9752 0.0954 0.0451 0.0109 0.0989 0.0496 0.0099 

4/ 0.05 0.9995 0.0955 0.0448 0.0108 0.0985 0.05 0.0097 

4/ 0.01 0.99998 0.0954 0.045 0.0107 0.0981 0.0497 0.0097 

 

Further results are available on request.  
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b) Share of rejections for model B (1 = 0.6, 2 = 0.4, 1 = 0.1, u1 = 2, u2 = 1) 

beta2 T=500 

10% level 

T=500, 

5% level 

thereof ne-

gative sign  

T=500, 

1% level 

T=50, 

10% level 

T=50, 

5% level 

thereof ne-

gative sign 

T=50, 

1% level 

0.6 1 1 0 0.9998 0.5428 0.4132 0.0002 0.1959 

0.575 1 0.9999 0 0.9988 0.4795 0.3481 0.0003 0.1549 

0.55 0.9997 0.9993 0 0.9931 0.4189 0.2973 0.0006 0.1216 

0.525 0.9987 0.9961 0 0.9813 0.3738 0.2558 0.0006 0.0959 

0.5 0.9951 0.9892 0 0.9553 0.3308 0.2215 0.0006 0.0783 

0.475 0.9879 0.9735 0 0.908 0.295 0.1934 0.0013 0.0634 

0.45 0.9724 0.9473 0 0.8403 0.266 0.1668 0.0016 0.0529 

0.425 0.9468 0.9015 0 0.7547 0.2389 0.1468 0.0024 0.043 

0.4 0.9076 0.8452 0 0.6568 0.2141 0.1296 0.0028 0.0363 

0.375 0.8584 0.7737 0 0.5588 0.1949 0.1146 0.0037 0.0311 

0.35 0.7939 0.6965 0 0.4608 0.1785 0.102 0.0043 0.0275 

0.325 0.7234 0.6113 0 0.3746 0.1659 0.0926 0.0052 0.0238 

0.3 0.6496 0.5298 0 0.2909 0.1524 0.0836 0.0058 0.0218 

0.275 0.5729 0.4487 0.0001 0.2182 0.141 0.0772 0.007 0.0195 

0.25 0.5002 0.3739 0.0002 0.1663 0.1327 0.0704 0.0079 0.0178 

0.225 0.4265 0.3031 0.0003 0.122 0.126 0.0653 0.0092 0.0164 

0.2 0.3536 0.2416 0.0008 0.0886 0.1181 0.0625 0.011 0.015 

0.175 0.2931 0.191 0.0012 0.0632 0.1135 0.0583 0.0126 0.0129 

0.15 0.2426 0.1482 0.0019 0.0464 0.1102 0.0559 0.0139 0.0117 

0.125 0.1932 0.1149 0.0027 0.0328 0.1059 0.0545 0.0156 0.0107 

0.1 0.1572 0.089 0.0048 0.024 0.1011 0.053 0.0171 0.0103 

0.075 0.131 0.0681 0.0074 0.0177 0.0979 0.052 0.0196 0.0094 

0.05 0.1121 0.0551 0.0111 0.0135 0.0967 0.0502 0.0207 0.009 

0.025 0.0992 0.0494 0.0171 0.0103 0.0977 0.0487 0.0227 0.0091 

0.01 0.0956 0.0482 0.0218 0.0097 0.0984 0.0477 0.0237 0.0087 

0 0.0959 0.0487 0.0254 0.0094 0.0974 0.0472 0.0243 0.009 

-0.01 0.0972 0.049 0.0295 0.01 0.0973 0.0474 0.0254 0.0092 

-0.025 0.1031 0.0519 0.0353 0.0103 0.0967 0.0487 0.0276 0.0091 

-0.05 0.1173 0.0603 0.0491 0.0138 0.096 0.0484 0.0293 0.0094 

-0.075 0.1354 0.0763 0.0687 0.0186 0.0984 0.0487 0.0322 0.0109 

-0.1 0.1655 0.0951 0.0903 0.0268 0.1005 0.0512 0.036 0.0113 

-0.125 0.204 0.1215 0.1183 0.0362 0.1027 0.0541 0.0398 0.0122 

-0.15 0.2507 0.157 0.1552 0.0519 0.1059 0.0566 0.0441 0.0127 

-0.175 0.3051 0.2033 0.2025 0.0725 0.1095 0.0592 0.0488 0.0139 

-0.2 0.3654 0.2567 0.2563 0.099 0.1157 0.0626 0.0534 0.0139 

-0.225 0.4303 0.3168 0.3168 0.1341 0.1201 0.0678 0.0595 0.0155 

-0.25 0.515 0.3843 0.3843 0.1817 0.127 0.0741 0.0663 0.0177 

-0.275 0.5937 0.4677 0.4677 0.2409 0.137 0.0786 0.0719 0.0201 

-0.3 0.67 0.5518 0.5518 0.3104 0.1468 0.0862 0.0802 0.0233 

-0.325 0.7464 0.6362 0.6362 0.3894 0.1587 0.0929 0.088 0.0261 

-0.35 0.8153 0.7208 0.7208 0.4852 0.1742 0.1031 0.0991 0.0303 

-0.375 0.8718 0.7952 0.7952 0.583 0.1932 0.1141 0.111 0.0351 

-0.4 0.9166 0.8609 0.8609 0.6828 0.2136 0.1278 0.1251 0.0402 

-0.425 0.9496 0.9121 0.9121 0.775 0.2353 0.147 0.1447 0.0477 

-0.45 0.9722 0.948 0.948 0.8512 0.2609 0.1668 0.1651 0.0567 

-0.475 0.9872 0.9724 0.9724 0.9125 0.2929 0.1928 0.1916 0.0679 

-0.5 0.9949 0.9885 0.9885 0.9528 0.3324 0.2218 0.2209 0.0821 

-0.525 0.9986 0.9952 0.9952 0.9779 0.37 0.2552 0.2545 0.0983 

-0.55 0.9997 0.9989 0.9989 0.9926 0.4174 0.3006 0.2999 0.1216 

-0.575 0.9999 0.9998 0.9998 0.9978 0.465 0.3493 0.3487 0.1561 

-0.6 1 1 1 0.9997 0.5207 0.4024 0.4019 0.1955 
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